Blast Movement Measurement vs Modelling and Surface Markers
Geologists use large data sets and spend many hours and much computing time modelling the distribution of minerals throughout a rock mass. Significant investments in drilling, assaying and quality assurance and quality control (QA/QC) are made before sophisticated geostatistical techniques are applied to the collected data. A large amount of research has been done in this field such that the ore control model is a reasonably accurate reflection of the mineral that is actually in the ground.
However, after all this effort, the mining engineers then work just as diligently to blast the in situ rock mass to a particle size that can be efficiently handled and further reduced by downstream comminution processes. In open cut mines, this invariably requires large amounts of explosive energy that displaces the ore boundaries from where the geologists originally defined them. Failure to accurately account for blast movement will result in misclassification, whether that is ore to waste; low grade to high grade; sulfide to oxide; or other contaminates – collectively referred to as ore loss and dilution.
The financial consequence of getting this wrong is substantial and not well quantified. This diminishes all of the good geological QA/QC done in defining the ore.
This paper discusses various technologies used to physically measure blast-induced orebody movement and the difficulties in modelling this with a purely theoretical approach. Rock mass structure, blast energy, design and timing contours all have significant and interrelated effects on blast movement vectors. Measured blast movement has a large variance due to the uncertainly of many of the controlling parameters – arguably dominated by the heterogeneous nature of the rock mass. Although there have been significant advances in blast movement modelling capability in recent years, this unpredictable blast movement limits their use in the context of production ore control. Certainly, without physical field measurements, accurate predictions of movement are near impossible.
Limitations of traditional surface markers (BVI or polypipe) in determining three-dimensional (3D) blast movement within the orebody are also reviewed, and advancements in accurately measuring these vectors within blasted ore discussed
Published in Application of Computers and Operations Research in the Minerals Industry 35TH APCOM Symposium / WOLLONGONG, NSW, 24 – 30 SEPTEMBER 2011
This website uses cookies.Agree and Dismiss To read more about the cookies we use and to change your settings see our cookies policy. Privacy Policy
Privacy Overview
This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.